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elucidation of the anomeric specificity of this specific phosphatase 
helps in the design of stereochemically defined inhibitors for this 
enzyme, which may serve as antibiotics acting on lipopoly-
saccharide biosynthesis." 
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Despite the vigorous current interest in the chemistry of 17-
and 19-electron organotransition-metal species,2 little is known 
about the mode of decomposition of 17-electron complexes to 
even-electron products via substitution of one-electron donors by 
two-electron ligands.3 The oxidation of transition-metal alkyls 
and other compounds containing <r-bound ligands has been ob­
served to lead to solvent substitution in donor solvents.4 Accu­
mulated evidence suggests that 17e -* 19e -* 17e cycles are 
operational when entering and leaving ligands are both two-
electron donors.5 Oxidation of (^-C5H5)Fe(CO)(L)R compounds 
induces catalytic CO insertion processes6,7 believed to proceed by 
similar 17e —• 19e -* 17e sequences. The oxidative behavior of 
analogous ruthenium complexes remains less thoroughly studied, 
although decomposition products indicative of the formation of 
metal-centered radicals have been reported.8 In this commu-
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nication, we describe the results of an investigation of the oxidation 
of ruthenium methyl compounds (TJ5-C5H5)RU(CO)(PR3)CH3 [R 
= Cy (cyclohexyl) (la), Ph (lb)]. Our data suggest that Ru-CH3 
bond homolysis may take place, after prior solvent coordination 
to the cation radicals, upon oxidation of la and lb. We present 
(1) large solvent effects on the rate of decomposition, indicating 
that the reactions occur via 19-electron species; (2) quantitative 
kinetic and mechanistic data showing that cations V+ react via 
competing processes that are of first and second order in T+, and 
(3) kinetic isotope effects suggestive of agostic interactions in 
cations V+. 

The first half of the derivative cyclic voltammetry9 (DCV) 
response for the oxidation of methyl compound la (90:10 
CH3CN/CH2C12,

10 0.1 M Bu4N
+PF6-) is shown in Figure 1. 

Peak a (+0.19 V vs Ag/Ag+) corresponds to the oxidation of la, 
while peaks b (+0.64 V) and c (+1.33 V) arise from oxidation 
of decomposition products (7i5-C5H5)Ru(PCy3)(NCCH3)2

+ (2a) 
and (jj5-C5H5)Ru(CO)(PCy3)(NCCH3)

+ (3a), respectively, 
verified by comparison with authentic samples. Oxidation of la 
takes place at +0.11 V vs the ferrocene/ferricinium (FC) couple, 
consuming 1.1 ±0.1 faraday/mol (constant-current coulometry 
with linear sweep voltammetry monitoring of substrate disap­
pearance11)- A 1:3 to 1:4 mixture of 2a and 3a was isolated after 
preparative-scale one-electron exhaustive electrolysis of la (80% 
combined yield). 

Reaction-order analysis by DCV9b showed la ,+ to decompose 
slowly, exhibiting first-order behavior at substrate concentrations 
ranging from 0.5 to 2.0 mM. The rate of disappearance of la*+ 

was measured in the temperature range -20 to +20 0C, giving 
a first-order rate constant k (20 0C) = 0.26 ± 0.02 s"1, AH* = 
10.6 ± 0.3 kcal/mol, and AS* = -25 ± 1 eu. An inverse kH/kD 
isotope effect (0 0C) of 0.89 ± 0.02 was found when (T?5-
C5H5)Ru(CO)(PCy3)CD3 (Ia-^3) was employed. Finally, a DCV 
analysis carried out in CH2C12/0.1 M Bu4N

+PF6' showed la , + 

to undergo no reaction on the time scale of the measurement 
(voltage sweep rate v = 0.1 V/s). Comparison with theoretical 
data for a first-order EC mechanism yields a factor of 50 as a 
lower limit for the rate enhancement upon changing the solvent 
from CH2Cl2 to CH3CN. DCV reaction-order analysis indicated 
an apparent CH3CN reaction order of 0.8 ± 0.05 in the con­
centration range 0-20% CH3CN (by volume) in CH2Cl2. 

Oxidation of la with 1 equiv of (r;5-C5H5)2Fe+PF6- (4) in 
CD3CN yielded a 44:56 mixture of (77'-C5H5)Ru(PCy3)-
(NCCD3)2

+ (2a-rf6) and (7,5-C5H5)Ru(CO)(PCy3)(NCCD3)
+ 

(3a-rf3) (82% combined yield; 1H NMR, internal standard). 
Methane was detected by 1H NMR (5 0.18) and GLC analysis 
(94 ± 8% yield). Mass spectrometry indicated a CH4:CH3D ratio 
of 93:7. Conversely, ferricinium oxidation of la-</3 in CH3CN 
gave a 98:2 CH3:CD4 ratio. 

Methyl compound lb underwent a one-electron (constant-
current coulometry), chemically irreversible (DCV) oxidation at 
+0.32 V vs FC. Reaction-order analysis of the decomposition 
of lb"+ provided a strikingly different mechanistic picture from 
that observed for la'+. In CH3CN, the decomposition was second 
order in cation lb ,+ in the concentration range 1-4 mM and 
approached first order at concentrations lower than 0.5 mM. For 
the second-order process, kinetic data acquired from -14 to +20 
0C (2 mM) gave k (20 0C) = (1.2 ± 0.07) X 10s M"1 s"1, AH* 
= -0.7 ± 0.2 kcal/mol, and AS* = -38 ± 2 eu. An inverse isotope 
effect of 0.87 ± 0.04 was observed. Under first-order conditions 
(0.25 mM), the kinetic parameters were it (20 0C) = 29 ± 2 s"', 
AH* = 8.2 ± 0.6 kcal/mol, AS* = -23 ± 2 eu, and JfcH/*D " 0-85 
± 0.08. 

Oxidation of lb under second-order conditions (one-electron 
constant-current electrolysis, 2.0 mM substrate in CH3CN/0.1 
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Figure 1. First half of derivative cyclic voltammogram for the oxidation 
of (^-C5H5)Ru(CO)(PCy3)CHj (la) (1.0 mM) in 90:10 CH3CN/ 
CH2Cl2, Bu4N+PF6- (0.1 M), at a Pt microelectrode (d • 
16 8 C and a voltage sweep rate v = 0.1 V/s. 

0.6 mm) at 

M Bu4N
+PF6') or first-order conditions (412 in CD3CN) proceeded 

to give high yields (electrolysis, 82% combined yield; oxidation 
with 4, 88% by 1H NMR with internal standard) of 2b and 3b 
in a remarkably constant ratio of (46 ± 3):(54 ± 3). Methane 
was observed (1H NMR) after oxidations with 4. In an attempt 
at generating higher concentrations of lb'+, mimicking second-
order conditions, oxidation of lb with Fe(phen)3

3+(PF6~)3 (E = 
0.78 V vs FC; phen = 1,10-phenanthroline) in 96:4 CD2Cl2/ 
CD3CN at -40 0C led to the initial observation of 3b and an 
intermediate that has been tentatively assigned the structure 
franMV'-CsHsJRutCOKPPhaXCHj)^ [1H NMR 6 5.71 (s, 5 
H), 1.14 (d, ./pucFH = 8.1 Hz, 6 H)]. The decomposition of this 
intermediate resulted in the formation of acetone, but in quantities 
too small (GLC-MS; 1H NMR: 15% based on available methyl 
in system) to represent a major decomposition pathway of this 
species. Oxidation of lb-rf3 similarly yielded (CD3)2CO. 

The large solvent effect on the rate of decomposition of la*+ 

(CH2Cl2 vs CH3CN) and the near-first-order dependence of the 
rate on the concentration of CH3CN suggest that the solvent 
CH3CN plays an active role in the decomposition reaction, possibly 
interacting with la'+ to form a 19-electron intermediate or 
transition state leading to the products. Ru-C homolysis at this 
stage would directly generate 3a, whereas CO insertion6 and/or 
substitution5 at the 19-electron stage ultimately could lead to 2a. 
The labeling experiments demonstrate that the eventual methyl 
radicals preferentially abstract hydrogen atoms from spectator 
ligands in the substrate.13,14 

The apparent low, near-zero activation enthalpy and the highly 
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Scheme I 

(T^-CsH5)Ru(CO)(PR3)CH3 

(18 e) 

(Tl5-CJH5)Ru(CO)(PR3)CH3••, 

(17 e) 

+ CH3CN 

(R = Ph, Cy) 

(Ti5-CjH5)Ru(CO)(PR3)(NCCH3)CH3
 + 

(19 e) 

(R = Ph) 

"Dimeric Intermediate" 

+ CH3CN 

(ti5-CjHj)Ru(CO)(PR3XNCCH3)
+ 

(Ti5-C5H5)Ru(CO)(PR3KCH3)2
+ 

Products 

negative activation entropy for the decomposition of lb'+ under 
second-order conditions are indicative of an exothermic pre-
equilibrium dimerization followed by a rate-determining reaction 
step ub.is Scheme I displays a reaction sequence consistent with 
these observations. 

Inverse kinetic isotope effects are often associated with multistep 
mechanisms including inverse equilibrium isotope effects and have 
been observed frequently during the reductive elimination of 
alkanes from hydridoalkyl complexes.16 In the case at hand, 
agostic17 (M-H-C) interactions in V* cations could give rise to 
inverse isotope effects.18' Since in complexes with agostic hy­
drogens, H (rather than D) preferentially occupies the briding 
position,17 agostic effects in 1*+ could lead to a stabilization of 
the Ru-CH3 bond relative to the Ru-CD3 bond. The possible 
occurrence of agostic interactions in 17-electron metal alkyl cations 
has been suggested previously.19 

Work in progress is aimed at gaining further understanding 
of the dynamics of oxidatively induced metal-alkyl cleavage re­
actions in these and related systems. 
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